syllabus.tests package#
Submodules#
syllabus.tests.determinism module#
syllabus.tests.sync_test_curriculum module#
- class syllabus.tests.sync_test_curriculum.SyncTestCurriculum(num_envs, num_episodes, *curriculum_args, **curriculum_kwargs)[source]#
Bases:
SequentialCurriculum
Base class and API for defining curricula to interface with Gym environments.
- REQUIRES_CENTRAL_UPDATES = False#
- REQUIRES_STEP_UPDATES = True#
- property requires_step_updates: bool#
Returns whether the curriculum requires step updates from the environment.
- Returns:
True if the curriculum requires step updates, False otherwise
- update_on_episode(episode_return, length, task, progress, env_id=None) None [source]#
Update the curriculum with episode results from the environment.
- Parameters:
episode_return – Episodic return
length – Length of the episode
task – Task for which the episode was completed
progress – Progress toward completion or success rate of the given task. 1.0 or True typically indicates a complete task.
env_id – Environment identifier
- update_on_step(task, obs, rew, term, trunc, info, progress, env_id=None) None [source]#
Update the curriculum with the current step results from the environment.
- Parameters:
obs – Observation from the environment
rew – Reward from the environment
term – True if the episode ended on this step, False otherwise
trunc – True if the episode was truncated on this step, False otherwise
info – Extra information from the environment
progress – Progress toward completion or success rate of the given task. 1.0 or True typically indicates a complete task.
env_id – Environment identifier
- Raises:
NotImplementedError –
- update_on_step_batch(step_results, env_id=None)[source]#
Update the curriculum with a batch of step results from the environment.
This method can be overridden to provide a more efficient implementation. It is used as a convenience function and to optimize the multiprocessing message passing throughput.
- Parameters:
step_results – List of step results
env_id – Environment identifier
syllabus.tests.sync_test_env module#
- class syllabus.tests.sync_test_env.PettingZooSyncTestEnv(num_episodes, num_steps=100)[source]#
Bases:
PettingZooTaskEnv
- action_space(agent)[source]#
Takes in agent and returns the action space for that agent.
MUST return the same value for the same agent name
Default implementation is to return the action_spaces dict
- class syllabus.tests.sync_test_env.SyncTestEnv(num_episodes, num_steps=100)[source]#
Bases:
TaskEnv
- reset(new_task=None)[source]#
Resets the environment to an initial internal state, returning an initial observation and info.
This method generates a new starting state often with some randomness to ensure that the agent explores the state space and learns a generalised policy about the environment. This randomness can be controlled with the
seed
parameter otherwise if the environment already has a random number generator andreset()
is called withseed=None
, the RNG is not reset.Therefore,
reset()
should (in the typical use case) be called with a seed right after initialization and then never again.For Custom environments, the first line of
reset()
should besuper().reset(seed=seed)
which implements the seeding correctly.Changed in version v0.25: The
return_info
parameter was removed and now info is expected to be returned.- Parameters:
seed (optional int) – The seed that is used to initialize the environment’s PRNG (np_random) and the read-only attribute np_random_seed. If the environment does not already have a PRNG and
seed=None
(the default option) is passed, a seed will be chosen from some source of entropy (e.g. timestamp or /dev/urandom). However, if the environment already has a PRNG andseed=None
is passed, the PRNG will not be reset and the env’snp_random_seed
will not be altered. If you pass an integer, the PRNG will be reset even if it already exists. Usually, you want to pass an integer right after the environment has been initialized and then never again. Please refer to the minimal example above to see this paradigm in action.options (optional dict) – Additional information to specify how the environment is reset (optional, depending on the specific environment)
- Returns:
- Observation of the initial state. This will be an element of
observation_space
(typically a numpy array) and is analogous to the observation returned by
step()
.- info (dictionary): This dictionary contains auxiliary information complementing
observation
. It should be analogous to the
info
returned bystep()
.
- Observation of the initial state. This will be an element of
- Return type:
observation (ObsType)
syllabus.tests.utils module#
- class syllabus.tests.utils.ExtractDictObservation(env: Env, filter_key: str | None = None)[source]#
Bases:
ObservationWrapper
,RecordConstructorArgs
Extract space from Dict observation space by the key.
- syllabus.tests.utils.create_cartpole_env(*args, sync_type=None, env_args=(), env_kwargs={}, wrap=False, **kwargs)[source]#
- syllabus.tests.utils.create_gymnasium_synctest_env(*args, sync_type=None, env_args=(), env_kwargs={}, **kwargs)[source]#
- syllabus.tests.utils.create_minigrid_env(*args, sync_type=None, env_args=(), env_kwargs={}, **kwargs)[source]#
- syllabus.tests.utils.create_nethack_env(*args, sync_type=None, env_args=(), env_kwargs={}, wrap=False, **kwargs)[source]#
- syllabus.tests.utils.create_pettingzoo_synctest_env(*args, sync_type=None, env_args=(), env_kwargs={}, **kwargs)[source]#
- syllabus.tests.utils.create_pistonball_env(*args, sync_type=None, env_args=(), env_kwargs={}, **kwargs)[source]#
- syllabus.tests.utils.create_procgen_env(*args, sync_type=None, env_args=(), env_kwargs={}, wrap=False, **kwargs)[source]#
- syllabus.tests.utils.create_simpletag_env(*args, sync_type=None, env_args=(), env_kwargs={}, **kwargs)[source]#
- syllabus.tests.utils.evaluate_random_policy_gymnasium(make_env, num_episodes=100, seeds=None)[source]#
- syllabus.tests.utils.evaluate_random_policy_pettingzoo(make_env, num_episodes=100, seeds=None)[source]#
- syllabus.tests.utils.run_episodes(env_fn, env_args, env_kwargs, curriculum=None, num_episodes=10, env_id=0)[source]#
Run multiple episodes of the environment.
- syllabus.tests.utils.run_episodes_queue(env_fn, env_args, env_kwargs, curriculum_components, sync=True, num_episodes=10, buffer_size=1, env_id=0)[source]#
- syllabus.tests.utils.run_gymnasium_episode(env, new_task=None, curriculum=None, env_id=0)[source]#
Run a single episode of the environment.
- syllabus.tests.utils.run_native_multiprocess(env_fn, env_args=(), env_kwargs={}, curriculum=None, num_envs=2, num_episodes=10, buffer_size=2)[source]#
- syllabus.tests.utils.run_native_vecenv(env_fn, env_args=(), env_kwargs={}, curriculum=None, num_envs=2, num_episodes=10)[source]#
- syllabus.tests.utils.run_pettingzoo_episode(env, new_task=None, curriculum=None, env_id=0)[source]#
Run a single episode of the environment.
- syllabus.tests.utils.run_ray_multiprocess(env_fn, env_args=(), env_kwargs={}, curriculum=None, num_envs=2, num_episodes=10)[source]#