Source code for syllabus.examples.utils.vtrace

# This file taken from
#     https://github.com/deepmind/scalable_agent/blob/
#         cd66d00914d56c8ba2f0615d9cdeefcb169a8d70/vtrace.py
# and modified.

# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Functions to compute V-trace off-policy actor critic targets.

For details and theory see:

"IMPALA: Scalable Distributed Deep-RL with
Importance Weighted Actor-Learner Architectures"
by Espeholt, Soyer, Munos et al.

See https://arxiv.org/abs/1802.01561 for the full paper.
"""

import collections

import torch
import torch.nn.functional as F

VTraceFromLogitsReturns = collections.namedtuple(
    "VTraceFromLogitsReturns",
    [
        "vs",
        "pg_advantages",
        "log_rhos",
        "behavior_action_log_probs",
        "target_action_log_probs",
    ],
)

VTraceReturns = collections.namedtuple("VTraceReturns", "vs pg_advantages")


[docs]def action_log_probs(policy_logits, actions): return -F.nll_loss( F.log_softmax(torch.flatten(policy_logits, 0, -2), dim=-1), torch.flatten(actions), reduction="none", ).view_as(actions)
[docs]def from_logits( behavior_policy_logits, target_policy_logits, actions, discounts, rewards, values, bootstrap_value, clip_rho_threshold=1.0, clip_pg_rho_threshold=1.0, ): """V-trace for softmax policies.""" target_action_log_probs = action_log_probs(target_policy_logits, actions) behavior_action_log_probs = action_log_probs(behavior_policy_logits, actions) log_rhos = target_action_log_probs - behavior_action_log_probs vtrace_returns = from_importance_weights( log_rhos=log_rhos, discounts=discounts, rewards=rewards, values=values, bootstrap_value=bootstrap_value, clip_rho_threshold=clip_rho_threshold, clip_pg_rho_threshold=clip_pg_rho_threshold, ) return VTraceFromLogitsReturns( log_rhos=log_rhos, behavior_action_log_probs=behavior_action_log_probs, target_action_log_probs=target_action_log_probs, **vtrace_returns._asdict(), )
[docs]@torch.no_grad() def from_importance_weights( log_rhos, discounts, rewards, values, bootstrap_value, clip_rho_threshold=1.0, clip_pg_rho_threshold=1.0, ): """V-trace from log importance weights.""" with torch.no_grad(): rhos = torch.exp(log_rhos) if clip_rho_threshold is not None: clipped_rhos = torch.clamp(rhos, max=clip_rho_threshold) else: clipped_rhos = rhos cs = torch.clamp(rhos, max=1.0) # Append bootstrapped value to get [v1, ..., v_t+1] values_t_plus_1 = torch.cat( [values[1:], torch.unsqueeze(bootstrap_value, 0)], dim=0 ) deltas = clipped_rhos * (rewards + discounts * values_t_plus_1 - values) acc = torch.zeros_like(bootstrap_value) result = [] for t in range(discounts.shape[0] - 1, -1, -1): acc = deltas[t] + discounts[t] * cs[t] * acc result.append(acc) result.reverse() vs_minus_v_xs = torch.stack(result) # Add V(x_s) to get v_s. vs = torch.add(vs_minus_v_xs, values) # Advantage for policy gradient. broadcasted_bootstrap_values = torch.ones_like(vs[0]) * bootstrap_value vs_t_plus_1 = torch.cat( [vs[1:], broadcasted_bootstrap_values.unsqueeze(0)], dim=0 ) if clip_pg_rho_threshold is not None: clipped_pg_rhos = torch.clamp(rhos, max=clip_pg_rho_threshold) else: clipped_pg_rhos = rhos pg_advantages = clipped_pg_rhos * (rewards + discounts * vs_t_plus_1 - values) # Make sure no gradients backpropagated through the returned values. return VTraceReturns(vs=vs, pg_advantages=pg_advantages)